Neuroimaging, genetic, clinical, and demographic predictors of treatment response in patients with social anxiety disorder
Author
Summary, in English
Background: Correct prediction of treatment response is a central goal of precision psychiatry. Here, we tested the predictive accuracy of a variety of pre-treatment patient characteristics, including clinical, demographic, molecular genetic, and neuroimaging markers, for treatment response in patients with social anxiety disorder (SAD). Methods: Forty-seven SAD patients (mean±SD age 33.9 ± 9.4 years, 24 women) were randomized and commenced 9 weeks’ Internet-delivered cognitive behavior therapy (CBT) combined either with the selective serotonin reuptake inhibitor (SSRI) escitalopram (20 mg daily [10 mg first week], SSRI+CBT, n = 24) or placebo (placebo+CBT, n = 23). Treatment responders were defined from the Clinical Global Impression-Improvement scale (CGI-I ≤ 2). Before treatment, patients underwent functional magnetic resonance imaging and the Multi-Source Interference Task taxing cognitive interference. Support vector machines (SVMs) were trained to separate responders from nonresponders based on pre-treatment neural reactivity in the dorsal anterior cingulate cortex (dACC), amygdala, and occipital cortex, as well as molecular genetic, demographic, and clinical data. SVM models were tested using leave-one-subject-out cross-validation. Results: The best model separated treatment responders (n = 24) from nonresponders based on pre-treatment dACC reactivity (83% accuracy, P = 0.001). Responders had greater pre-treatment dACC reactivity than nonresponders especially in the SSRI+CBT group. No other variable was associated with clinical response or added predictive accuracy to the dACC SVM model. Limitations: Small sample size, especially for genetic analyses. No replication or validation samples were available. Conclusions: The findings demonstrate that treatment outcome predictions based on neural cingulate activity, at the individual level, outperform genetic, demographic, and clinical variables for medication-assisted Internet-delivered CBT, supporting the use of neuroimaging in precision psychiatry.
Department/s
Publishing year
2020
Language
English
Pages
230-237
Publication/Series
Journal of Affective Disorders
Volume
261
Links
Document type
Journal article
Publisher
Elsevier
Topic
- Health Sciences
- Psychology (excluding Applied Psychology)
Keywords
- CBT
- Pattern recognition
- Personalized medicine
- Social phobia
- SSRI
- SVM
Status
Published
ISBN/ISSN/Other
- ISSN: 0165-0327