51ÖØ¿ÚÁÔÆæ

The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: ).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Tissue temperature control using a water-cooled applicator: Implications for transurethral laser-induced thermotherapy of benign prostatic hyperplasia

Author

  • C Sturesson
  • Stefan Andersson-Engels

Summary, in English

A prototype to a water-cooled applicator to be used in transurethral laser-induced thermotherapy of benign prostatic hyperplasia was developed. The flexible applicator was made of Teflon(TM) tubes except for the distal outer part which was made of glass, providing a transparent medium for laser radiation and enabling efficient cooling of the surrounding tissue. For heating, laser light from a Nd:YAG laser emitting at 1064 nm, which was coupled into an optical fiber with an institutionally made diffusing tip, was used. Cooling was performed by flushing water through the applicator. By using a mathematical model it was possible to connect the temperature rise of the water in the applicator to the maximum tissue temperature. Tissue light absorption was calculated using Monte Carlo simulations and the heat conduction equation was solved numerically using a finite-difference technique. Experiments on porcine liver in vitro showed that the maximum tissue temperature could be estimated with an average accuracy of 0.4 degrees C by measuring the difference in outlet and inlet applicator water temperature and using the thermal model. The results presented suggest that the described method for temperature control can be used during laser prostatectomy to maximize the lesion size while preventing carbonization. (C) 1997 American Association of Physicists in Medicine.

Department/s

Publishing year

1997

Language

English

Pages

461-470

Publication/Series

Medical Physics

Volume

24

Issue

3

Full text

  • - 182 kB

Links

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Biophysics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0094-2405