A millipede compound eye mediating low-resolution vision
Author
Summary, in English
Millipedes are a species-rich and ancient arthropod clade which typically bear a pair of lateral compound eyes with a small number of large facets. To understand the visual tasks that underlie the evolution of millipede eyes, their spatial resolving performance is of key importance. We here investigate the spatial resolution of the millipede Cylindroiulus punctatus using behavioural assays. Individual animals were placed in the centre of a cylindrical arena under bright downwelling light, with dark stimuli of varying angular dimensions placed on the arena wall. We used continuous isoluminant stimuli based on a difference of Gaussians signal to test for orientation to the dark target via object taxis. Headings of individual animals were tracked in relation to the stimuli to determine whether the animals oriented towards the stimulus. We implemented a multilevel logistic regression model to identify the arc width of the stimulus that animals could resolve. We then modelled the angular sensitivity needed to identify this. We also related the visual performance to the 3D anatomy of the eye. We found that C. punctatus can resolve a stimulus of 56° period (sufficient to detect a 20° dark target). Assuming a contrast threshold of 10%, this requires a receptor acceptance angle of 72° or narrower. Spatial resolving power this low would only suffice for the simplest visual tasks, such as shelter-seeking.
Department/s
- Functional zoology
- Lund Vision Group
Publishing year
2019
Language
English
Pages
36-44
Publication/Series
Vision Research
Volume
165
Links
Document type
Journal article
Publisher
Elsevier
Topic
- Evolutionary Biology
Keywords
- Diplopoda
- Myriapoda
- Photoreception
- Visual acuity
- Visual ecology
- Visually-guided behaviour
Status
Published
Research group
- Lund Vision Group
ISBN/ISSN/Other
- ISSN: 0042-6989